Three Dimensional Geometry - Class XII

Past Year JEE Questions

Questions

Quetion: 01

Let P be a plane passing through the points (1, 0, 1), (1, -2, 1) and (0, 1, -2). Let a vector $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ be such that \vec{a} is parallel to the plane P, perpendicular to $(\hat{i} + 2\hat{j} + 3\hat{k})$ and \vec{a} . $(\hat{i} + \hat{j} + 2\hat{k}) = 2$, then $(\alpha - \beta + \gamma)^2$ equals ______.

Solutions

Solution: 01

Answer Correct Answer is 81

Explanation

Equation of plane:

$$\begin{vmatrix} x - 1 & y - 0 & z - 1 \\ 1 - 1 & 2 & 1 - 1 \\ 1 - 0 & 0 - 1 & 1 + 2 \end{vmatrix} = 0$$

$$\Rightarrow 3x - z - 2 = 0$$

$$\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$
 | | to 3x - z - 2 = 0

$$\Rightarrow 3\alpha - 8 = 0 \dots (1)$$

$$\vec{a} \perp \hat{i} + \hat{j} + 3\hat{k}$$

$$\Rightarrow \alpha + 2\beta + 38 = 0$$
 (2)

$$\overrightarrow{a} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 0$$

$$\Rightarrow \alpha + \beta + 28 = 2 \dots (3_)$$

On solving 1, 2 & 3

$$\alpha$$
 = 1, β = -5, 8 = 3

So,
$$(\alpha - \beta + 8) = 81$$